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Different entanglement dynamics and transfer behaviors

due to dipole-dipole interaction
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We analyze entanglement dynamics and transfer in a system composed of two initially correlated two-level
atoms, in which each atom is coupled with another atom interacting with its own reservoir. Considering
atomic dipole-dipole interactions, the results show that dipole-dipole interactions restrain the entanglement
birth of the reservoirs, and a parametric region of dipole-dipole interaction strength exists in which the
maximal entanglement of two initially uncorrelated atoms is reduced. The transfer of entanglement shows
obvious different behaviors in two initial Bell-like states.
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Entanglement, a unique feature of quantum mechanical
systems with no classical analog, is a crucial resource
for various aspects of quantum information processing[1].
Entanglement dynamics and entanglement control have
recently attracted extensive studies, and various aspects
of entanglement, especially multipartite entanglement
and its evolution, require further exploration[2]. A pecu-
liar aspect of entanglement dynamics is the well known
“entanglement sudden death (ESD)” phenomenon. In
the process of entanglement distribution and qubit ma-
nipulation, each qubit is unavoidably exposed to its own
uncontrollable environment. This phenomenon leads to
local decoherences that spoil the necessary entanglement.
In previous studies, various types of environments were
studied, such as fermionic symmetry-broken[3], quan-
tum critical[4], dephasing[5], multimode electromagnetic
field[6,7], and quantum spin environments[8], among oth-
ers.

The evolution of open quantum systems is divided into
the Markovian and non-Markovian regimes. For the
Markovian regime, the correlation time between the sys-
tem and environment is infinitesimally small such that
the dynamical map has no memory effects and results
in a monotonic flow of information from the system to
the environment. In contrast, a non-Markovian regime
with memory has dynamical traits that give rise to the
backflow of information from the environment to the sys-
tem and can lead to distinctly different effects on the
decoherence and disentanglement of open systems com-
pared with the Markovian regime[9,10]. Several studies
are currently focused on the non-Markovian regime for its
dynamical behaviors that differ significantly from those
of the Markovian regime, including those involving non-
Markovianity[9,10], positivity[11,12], and several other dy-
namical properties and approaches.

The dynamics of entanglement transfer in interact-
ing and non-interacting systems has been extensively
studied[13−15]. Conservation for entanglement depends
on how qubits are initially correlated[16]. Zhang et al.
focused on the case in which two atoms off-resonantly
interact with their loose cavities and examined the com-

plete entanglement transfer from the atoms to their in-
dependent reservoirs[14]. In this letter, we study a sys-
tem consisting of two initially correlated two-level atoms
A and B, each coupled with another atom C(D) inter-
acting with its own reservoir a(b). The atoms A and
B are initially entangled, whereas C and D are in the
ground states. Dipole-dipole interactions exist between
the atoms in each subsystem. We consider the Marko-
vian and non-Markovian effects of reservoirs on the en-
tanglement evolution and transfer for the remote parties
AB, CD, and ab.

We consider two independent subsystems, each formed
by two two-level atoms coupled with a thermal reservoir.
In each subsystem, the atoms interact with each other
via dipole-dipole interactions. Considering a subsystem
ACa as an example, the Hamiltonian H is

H = H0 + HI , (1)

with H0 as the free Hamiltonian, HI describing the in-
teraction part.

H0 = Ω(σA
+σA

− + σC
+σC

−) +
∑

k

ωka†
kak, (2)

HI =
∑

k

[gk(αAσ−
A + αCσ−

C )a†
k + g∗k(αAσ+

A + αCσ+
C )ak]

+ D(σ−
Aσ+

C + σ−
Cσ+

A), (3)

where Ω and σi
±(i = A, C) are the atomic transition fre-

quency and the inversion operators of the ith atom, re-

spectively; a†
k(ak) is the creation (annihilation) operator

of the photon of the reservoir; ωk and gk are the fre-
quency of the mode k of the reservoir and its coupling
strength with the atoms, respectively; D is the strength
of the dipole-dipole interaction between atoms. The ac-
tual coupling strength between the ith atom and the kth
mode photon is measured by |gk|αi.

Suppose that the atoms A and C are initially in the
state |eg〉AC and reservoir a is in the vacuum state
|0̄〉r =

∏

k

|0k〉r. The quantum state of subsystem ACa
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at time t can be written as

|Φ(t)〉 = [c1(t) |eg〉+c2(t) |ge〉]⊗|0̄〉+c3(t) |gg〉⊗|1̄〉 , (4)

where |1̄〉 = 1
c3(t)

∑

k

γk(t) |1̄k〉 , |1̄k〉 means that there

is one photon in the kth mode of the reservoir. The
coefficients satisfy c1(t)

2 + c2(t)
2 + c3(t)

2 = 1. We can
obtain the coefficients c1(t), c2(t), and ck(t) by solving
the equation of motion i d

dt
|Φ(t)〉 = HI |Φ(t)〉. From Eqs.

(3) and (4), we have

i
d

dt
c1(t) = Dc2(t) + αA

∑

k

g∗kei(Ω−ωk)tck(t), (5)

i
d

dt
c2(t) = Dc1(t) + αC

∑

k

g∗kei(Ω−ωk)tck(t), (6)

i
d

dt
γk(t) = gke−i(Ω−ωk)t(αAc1(t) + αCc2(t)). (7)

Integrating Eq. (7) with the initial condition γk(0) = 0,
we can obtain

γk(t) = −i

∫ t

0

dt′gke−i(Ω−ωk)t′(αAc1(t
′) + αCc2(t

′)).

(8)
Then, substituting Eq. (8) into Eqs. (5) and (6), we can
obtain

d

dt
c1(t) = −iDc2(t) −

∫ t

0

dt′
∑

k

|gk|2 e−i(ωk−Ω)(t−t′)

· (α2
Ac1(t

′) + αAαCc2(t
′)), (9)

d

dt
c2(t) = −iDc1(t) −

∫ t

0

dt′
∑

k

|gk|2 e−i(ωk−Ω)(t−t′)

· (αAαCc1(t
′) + α2

Cc2(t
′)). (10)

In the continuum limit for the reservoir spectrum, the

sum over the modes is replaced by the integral
∑

k

|gk|2 →
∫

dωJ(ω), where J(ω) is the reservoir spectral den-
sity. We consider a spectrum of the field displaying a
Lorentzian broadening with

J(ω) =
R2

π

λ

(ω − ωc)2 + λ2
, (11)

where ωc is the fundamental frequency of the field, R
specifies the atom-reservoir coupling, and λ is the half-
width at half-height of the field spectrum profile. Ac-
cording to Refs. [17,18], weak-coupling is represented by
λ > 2R, where the behavior of the qubit-reservoir system
is Markovian and irreversible decay occurs. In contrast, a
strong-coupling regime is represented by λ < 2R, where
non-Markovian dynamics occurs accompanied by oscilla-
tory reversible decay, and a structured, rather than flat,
reservoir situation applies.

Here, we set f(t− t′) =
∫ ∞

−∞
dωJ(ω)e−(ω−Ω)(t−t′), and

the equations of c1(t) and c2(t) are

d

dt
c1(t) = − iDc2(t) −

∫ t

0

dt′(α2
Ac1(t

′)

+ αAαCc2(t
′))f(t − t′), (12)

d

dt
c2(t) = − iDc1(t) −

∫ t

0

dt′(αAαCc1(t
′)

+ α2
Cc2(t

′))f(t − t′). (13)

Using Laplace transformation, we can obtain the exact
solutions of c1(t) and c2(t).

Results from previous calculations can be used directly
to obtain the solution for our model. We consider the
subsystems ACa and BDb with no interaction between
them; the only correlation between ACa and BDb is the
initial entanglement of atoms AB. Here, atoms A and
B are considered to be initial in the Bell-like pure states
(α |gg〉+β |ee〉)AB and (α |eg〉+β |ge〉)AB . The atoms C
and D are in the ground state, whereas the reservoirs a
and b are in the vacuum state. The initial states of the
system are

|Ψ(0)〉 = (α |gg〉AB + β |ee〉AB) ⊗ |gg〉CD ⊗ |0̄0̄〉ab ,
(14)

|Φ(0)〉 = (α |eg〉AB + β |ge〉AB) ⊗ |gg〉CD ⊗ |0̄0̄〉ab .
(15)

We can obtain the evolved states at t > 0 as

|Ψ(t)〉=α|gg〉AB|gg〉CD|0̄0̄〉ab+β[c2
1(t)|ee〉AB|gg〉CD|0̄0̄〉ab

+ c1(t)c2(t) |eg〉AB |ge〉CD |0̄0̄〉ab

+ c1(t)c3(t) |eg〉AB |gg〉CD |0̄1̄〉ab

+ c1(t)c2(t) |ge〉AB |eg〉CD |0̄0̄〉ab

+ c2
2(t) |gg〉AB |ee〉CD |0̄0̄〉ab

+ c2(t)c3(t) |gg〉AB |eg〉CD |0̄1̄〉ab

+ c1(t)c3(t) |ge〉AB |gg〉CD |1̄0̄〉ab

+ c2(t)c3(t) |gg〉AB |ge〉CD |1̄0̄〉ab

+ c2
3(t) |gg〉AB |gg〉CD |1̄1̄〉ab], (16)

|Φ(t)〉=α(c1(t) |eg〉AB |gg〉CD |0̄0̄〉ab

+ c2(t) |gg〉AB |eg〉CD |0̄0̄〉ab

+ c3(t) |gg〉AB |gg〉CD |1̄0̄〉ab)

+ β1(t) |ge〉AB |gg〉CD |0̄0̄〉ab

+ c2(t) |gg〉AB |ge〉CD |0̄0̄〉ab

+ c3(t) |gg〉AB |gg〉CD |0̄1̄〉ab). (17)

We analyze the evolution of entanglement in the mod-
els above. To quantify two qubit entanglement, we use
the Wootters concurrence[19], defined as C(t) = max{0,√

λ1−
√

λ2−
√

λ3−
√

λ4}, where λ1 >λ2 >λ3 >λ4 >0 are
the eigenvalues of the matrix ξ = ρ12(σ

1
y⊗σ2

y)ρ∗12(σ
1
y⊗σ2

y)
and ρ∗12 is the complex conjugate of ρ12. C(t) = 1 indi-
cates the maximally entangled state, whereas C(t) = 0
indicates a separable state. For Bell-like states, the den-
sity matrix of the atomic system has an X form based
on {|00〉 , |01〉 , |10〉 , |11〉}

ρX =







a 0 0 w
0 b z 0
0 z∗ c 0

w∗ 0 0 d






. (18)
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For the X-state Eq. (18), the concurrence can be derived
as

C(ρ) = 2 max{0, |w| −
√

bc, |z| −
√

ad}. (19)

We set αA = αC = 1, c1(0) = 1, c2(0) = 0 for conve-
nience and ignore the detuning between atoms and reser-
voir. The coefficients c1(t) and c2(t) have the forms

c1(t) =
1

2
eiDt +

1

2
e−

1

2
t(λ+iD)

·
[

cosh

(

Θt

2

)

+
λ − iD

Θ
sinh

(

Θt

2

)]

, (20)

c2(t) = −1

2
eiDt +

1

2
e−

1

2
t(λ+iD)

·
[

cosh

(

Θt

2

)

+
λ − iD

Θ
sinh

(

Θt

2

)]

, (21)

c3(t) =
√

1 − c1(t)2 − c2(t)2, (22)

with
Θ =

√

(λ − iD)2 − 8R2. (23)

We attempt to analyze the evolution of entanglement
in systems with different parameters. In the model we
discussed above, the dynamics of the system varies with
the parameters α, β, R/λ, and D.

First, we investigate the entanglement of state |Ψ(t)〉
in Eq. (16). Using the method above, the concurrences
of AB, CD, and ab will be










CAB=2 max
{

0,
∣

∣αβc2
1(t)

∣

∣−
∣

∣β2[c2
1(t)(1−c2

1(t))]
∣

∣

}

CCD=2 max
{

0,
∣

∣αβc2
2(t)

∣

∣−
∣

∣β2[c2
2(t)(1−c2

2(t))]
∣

∣

}

Cab =2 max
{

0,
∣

∣αβc2
3(t)

∣

∣−
∣

∣β2[c2
3(t)(1−c2

3(t))]
∣

∣

}

. (24)

For the initial state |Ψ(0)〉, an ESD appears for atoms
AB even with maximal initial entanglement CAB = 1.
Entanglement sudden birth simultaneously occurs for
atoms CD and reservoirs ab. Figure 1 shows the evolu-
tion of entanglement of atoms AB and CD and reservoirs
ab in a non-Markovian regime where λ= 0.1R. We set
α/β =

√

3/4. Here, we provide three cases of systems
with weak (D=0.1R), intermediate (D=R), and strong
(D= 5R) dipole-dipole interactions. The entanglement
of AB decays asymptotically with oscillation and ESD,
whereas the entanglements of CD and ab approach a
peak value and then decay asymptotically with oscil-
lation (Fig. 1(a)). Figure 1 shows that the transfer of
entanglement between atoms AB and CD is strength-
ened with increasing dipole-dipole interactions. Dipole-
dipole interactions delay the decay of entanglement of
AB and restrain the birth of entanglement of reservoirs
ab. However, for the atoms CD, a parametric region
of dipole-dipole interaction causes the entanglement to
weaken compared with the case with no dipole-dipole
interaction. Figure 2 shows the maximum entanglement
values of atoms CD with dipole-dipole interactions in-
creasing from 0 to 2.5R in the non-Markovian regime
where λ=0.1R. When no dipole-dipole interaction exists
between atoms, reservoirs ab act as a medium in the
transfer of entanglement from atoms AB to CD. When
we consider dipole-dipole interactions, two pathways for
the transfer of entanglement appear. On the one hand,
dipole-dipole interactions between atoms weaken the in-
teraction between atoms and the reservoir. On the other

hand, weaker dipole-dipole interactions do not play an
obvious role during entanglement transfer that reduces
the entanglement transferred to CD. The entanglement
of atoms CD remains at the lowest level with time evo-
lution, particularly when the dipole-dipole interaction
strength is equivalent to the strength of the coupling
between atoms and reservoirs.

Figure 3 shows the evolution of entanglement of atoms
AB and CD and reservoirs ab in the Markovian regime
where λ = 8R with α/β =

√

3/4. Here, we demon-
strate weak (D = 0.1R), intermediate (D = R), and
strong (D= 5R) dipole-dipole interactions. With weak
dipole-dipole interactions, D = 0.1R, as in Fig. 3(a),
the entanglement of atoms AB decays asymptotically,

Fig. 1. Time evolution of concurrences of AB, CD, and ab in
the non-Markovian regime where λ = 0.1R for the state |Ψ(t)〉

with α/β =
p

3/4 in the case of (a) weak (D = 0.1R), (b)
intermediate (D = R), and (c) strong (D = 5R) dipole-dipole
interactions.

Fig. 2. Maximum values of concurrence of CD with dipole-
dipole interaction strengths changing from 0 to 2.5R in the
non-Markovian regime where λ = 0.1R for the state |Ψ(t)〉

with α/β =
p

3/4.
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Fig. 3. Time evolution of concurrences of AB, CD, and ab
in the Markovian regime where λ = 8R for the state |Ψ(t)〉

with α/β =
p

3/4 in the case of (a) weak (D = 0.1R), (b)
intermediate (D = R), and (c) strong (D = 5R) dipole-dipole
interactions.

and the entanglement of atoms CD or reservoirs ab grad-
ually increases without oscillation. When the dipole-
dipole interaction is equivalent to the atom-reservoir cou-
pling strength such that D = R, the entanglement of AB
evolves as in the non-Markovian regime with ESD and os-
cillation occurs. The entanglement of CD reaches a peak
value and subsequently oscillates. The entanglement evo-
lutions of atoms AB and CD reflect non-Markovianity.
With the strong dipole-dipole interactions, D = 5R, the
non-Markovianity of the system becomes more obvious,
entanglement transfer between AB and CD is strength-
ened, and the time windows of sudden death are short-
ened. The entanglement of ab reflects no oscillation but a
much stronger dipole-dipole interaction restrains its birth
time more obviously.

We observed entanglement transfer from atoms AB
to CD and reservoirs ab. However, with the coupling
of atoms and reservoirs, the transfer was incomplete in
these three parts. Figure 4 shows the entanglements of
atoms AB and CD and reservoirs ab and the sum of
these three bipartite entanglements in the non-Markovian
regime where λ = 0.1R with D = R and α/β =

√

3/4.
The initial entanglement is only partly distributed in
atoms AB and CD and reservoirs ab with time evolu-
tion, and part of it is transferred to multi-qubit form.
Figure 5 shows a plot of the sum of the entanglements
AB, CD, and ab with different ratios of α and β. When
α/β < 1/2, no entanglement is distributed in these three
parts. When α/β = 1/3, the entanglement quickly de-
cays to zero. When α/β = 1, indicating an initial maxi-
mum entanglement state, the sum entanglement remains
at a fixed value.

For the state |Φ(t)〉 in Eq. (17), the behavior of en-

tanglement dynamics differs from the state |Ψ(t)〉. For
this state, the concurrences of atoms AB and CD and
reservoirs ab have the form











CAB = 2 max
{

0,
∣

∣αβc2
1(t)

∣

∣

}

CCD = 2 max
{

0,
∣

∣αβc2
2(t)

∣

∣

}

Cab = 2 max
{

0,
∣

∣αβc2
3(t)

∣

∣

}

. (25)

From Eq. (25), the entanglements of AB, CD, and ab sat-
isfy the equation CAB+CCD+Cab=2αβ, indicating that
the initial entanglement of AB thoroughly distributes

Fig. 4. Time evolution of concurrences of AB, CD, and ab
and the sum of these values in the non-Markovian regime
where λ = 0.1R for the state |Ψ(t)〉 with α/β =

p

3/4 and
D = R.

Fig. 5. Sum of entanglements of AB, CD, and ab in the non-
Markovian regime λ = 0.1R for the state |Ψ(t)〉 with D = R.

Fig. 6. Time evolution of concurrences of AB, CD, and ab
and the sum of these values in the non-Markovian regime
where λ = 0.1R for the state |Φ(t)〉 with α/β =

p

3/4 and
D = R.
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in these three parts with time evolution. Figure 6 shows
the entanglements of AB, CD, and ab, and the sum of
these values in the non-Markovian regime where λ=0.1R
with D=R. In this state, no sudden death or sudden
birth phenomenon with or without dipole-dipole inter-
actions occurs. The initial entanglement completely
transfers in these three bipartite entanglements.

In conclusion, we discuss a system consisting of two ini-
tially correlated two-level atoms, each coupled with an-
other atom interacting with its own reservoir. We study
the entanglement dynamics and transfer of two subsys-
tems with different initial entanglements, and atomic
dipole-dipole interactions are considered. For the condi-
tion with initial atomic entanglement(α |eg〉+ β |ge〉)AB ,
no ESD or sudden birth phenomenon occurs with time
evolution. The total entanglement of atoms AB and CD
and reservoirs ab is conservative and equal to the initial
entanglement of atoms AB. For the condition with ini-
tial atomic entanglement (α |gg〉 + β |ee〉)AB , the total
entanglement of atoms AB and CD and reservoirs ab is
not conserved and cannot reach a maximum value similar
to that of the initial entanglement of atoms AB. If pa-
rameters α, β satisfy α/β < 1/2, the initial entanglement
will completely transfer to the multi-qubit form. Atomic
dipole-dipole interactions can accelerate the entangle-
ment transfer between AB and CD and simultaneously
restrain the entanglement birth of reservoirs ab. How-
ever, for the entanglement evolution of atoms CD, a
parametric region of dipole-dipole interaction exists such
that the dipole-dipole interaction results in weaker en-
tanglement compared with the case with no dipole-dipole
interaction.
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and the Specialized Research Fund for the Doctoral Pro-
gram of Higher Education (No. 20093705110001).
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